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1 Simple Cox models

De�ne

N(t) =
∑
i

Ni(t)

Y (t) =
∑
i

Yi(t)

λ(t) = dN(t)/Y (t)

where Ni(t) is the cumulative number of events up to time t for subject i, and Yi(t) is the 0/1
indicator that subject i is at risk.

For a survival curve we almost uniformly use the Kaplan-Meier estimate, with the Fleming-
Harrington as a rare alternative:

KM(t) =
∏
s≤t

(1− λ(s))

FH(t) =
∏
s≤t

e−λ(s)

= exp(−
∑
s≤t

λ(s))

Since exp(−x) ≈ 1−x we could view the KM as a �rst-order Taylor series approximation to the
FH.

For survival curves based on a Cox model things get a bit more complicated. For a �t with
covariates x and coe�cient β, the predicted hazard for a new subject with covariate vector z
will be

λ(t; z) =
dN(t)∑

i Yi(t)e(xi−z)′β

and the Breslow estimate of survival is

S(t; z) =
∏
s≤t

e−λ(s;z)
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This is parallel to the Fleming-Harrington form. The KM equivalent is never used for a simple
reason, which is that for large values of z (assume wlog that β is positive) λ(t; z) may be greater
than 1, which in turn leads to a negative values of 1−λ, i.e., negative values for S(t). This most
often occurs near the end of the curve, when the number at risk is small.

2 Multi-state models

For a multi-state hazards model with m states, there will be a family of hazards, one for each
possible transition from state j to state k (j ̸= k).

λjk(t) =
dNjk(t)∑

i Yij(t)

λjk(t; z) =
dNjk(t)∑

i Yij(t)e(xi−z)′β

Njk counts the cumulative number of j to k transitions, and Yij(t) is 1 if subject i is in state
j and at risk for a transition (out of state j) at time t. The �rst equation above de�nes the
non-parametric hazard, and the second the predicted hazard from a multi-state hazards model.
The coe�cicient vector β will often be di�erent for each j:k transition, but we have omitted that
from the notation for simplicity.

The m by m intensity matrix A(t) is de�ned to have o� diagonal elements Ajk(t) = λjk(t)
and similarly for A(t; z) based on the multi-state hazards (Cox) model. The diagonal element
is de�ned such that each row sums to zero, Ajj = −

∑
k ̸=j λjk(t). Two natural estimates of the

probability in state are the Aalen-Johansen and exponential estimates

AJ(t) = p(0)
∏
s≤t

(I +A(s))

p(t) = p(0)
∏
s≤t

eA(s)

Here p(0) is the probabilty distribution at the starting time, which is very often (1, 0, 0, . . . , 0),
i.e., everyone starts in state 1, and e is the matrix exponential. For matrices, exp(A) exp(B)! =
exp(A + B) unless AB = BA, a condition that will not hold for our models, so the second
equation does not collapse to a sum. For both estimates

∑
p(t) = 1 at all time points.

For a multi-state Cox model, the �rst formula has the same �aw as before, namely that
for some values of z it will lead to negative elements in p(t). This normally occurs for high
risk subjects (high predicted hazards for one or more transitions) and smaller risk sets; the
�aw normally does not arise in a study with signi�cant censoring as the risk sets never become
small. However, unlike the single endpoint Cox model, this alternate estimate is suggested as
an estimate by many authors, e.g. the Cook and Lawless textbook, and also appear as the
default in some packages (mstate). The survival package follows the Breslow pattern and uses
the exponential estimate.

Accurate and e�cient compuation of the matrix exponential is a long-standing research topic.
The simple and direct de�nition

eA = I +A+A2/2! +A3/3! +A4/4! + . . .
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is neither e�cient or accurate. A strong background is provided by the textbook of Higham
[?]; many of the methods discussed there and some newer re�nements are incorporated into the
expm library in R. One important special case is for an event time where all the transitions are
from a single state. The intensity matrix A then will have only a single non-zero row, say it is
row j. Then B = exp(A) will be equal to the identity matrix, for all rows except row j, and

Bjj = exp(Ajj)

Bjk = (1−Bjj)λjk/
∑
k ̸=j

λjk

This occurs for any event time without ties, and also for competing risks. It is so common that
the survival package uses an internal routine survexpm which checks for the case, invoking the
expm routine otherwise.

One interesting aside is the issue of scaling. The identity exp(θI + A) = exp(θ) exp(A)
means that it is easy to pre-scale the diagonal of A, which can have an impact on downstream
compuations. Corollary 4.22 of [?] shows that for an intensity matrix A, the optimal scaling is
θ = maxj |Ajj |; the resulting matrix B = θI + A has all elements positive. Hence Bk is postive
for all powers k and there is no cancellation in the simple Taylor series for expm.

An A(t; z) matrix that actually occurs in one of our examples has

> A = rbind(c(-.2, .1, .1), c(0, -1.1, 1.1), c(0, 0,0))

> expm(A)

3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]

[1,] 0.8187308 0.05398441 0.1272848

[2,] 0.0000000 0.33287108 0.6671289

[3,] 0.0000000 0.00000000 1.0000000

> B <- A + 1.1*diag(3)

> exp(-1.1) * expm(B) # verify the formula

3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]

[1,] 0.8187308 0.05398441 0.1272848

[2,] 0.0000000 0.33287108 0.6671289

[3,] 0.0000000 0.00000000 1.0000000

> diag(3) + A # the bad estimate

[,1] [,2] [,3]

[1,] 0.8 0.1 0.1

[2,] 0.0 -0.1 1.1

[3,] 0.0 0.0 1.0

> diag(3) + A + A^2/2 + A^3/6

[,1] [,2] [,3]

[1,] 0.8186667 0.1051667 0.1051667

[2,] 0.0000000 0.2831667 1.9268333

[3,] 0.0000000 0.0000000 1.0000000

> exp(-1.1) *(diag(3)+ B)
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[,1] [,2] [,3]

[1,] 0.6324551 0.03328711 0.03328711

[2,] 0.0000000 0.33287108 0.36615819

[3,] 0.0000000 0.00000000 0.69902928

> exp(-1.1) *(diag(3)+ B + B^2/2 + B^3/6)

[,1] [,2] [,3]

[1,] 0.8077117 0.03500694 0.03500694

[2,] 0.0000000 0.33287108 0.64138710

[3,] 0.0000000 0.00000000 0.97425818

We see that the scaled version converges faster, but I + B is still not a particularly good
approximation.
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