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1 Kaplan-Meier

The rttright function in the package illustrates something called the redistribute to the right
algorithm. It was introduced by Efron as another way to compute the Kaplan-Meier estimate,
but more so as an alternate way to understand the Kaplan-Meier. The function is much slower
and less capable than survfit, but it has been useful as part of the test suite. Its primary
purpose in the package, however, is for illustration.

Consider a set of subjects followed forward in time, each with an initial case weight of 1.
Whenever someone is censored, evenly distribute the subject's current case weight to all those
who are still at risk, but not censored. The basic idea is rather like someone distributing their
assets, equally, to all the remaining relatives before exiting the stage.

Table 1 shows a hypothetical example with 10 subjects whose data is 1, 2, 2+, 3, 4+, 4+,
5, 5+, 8, and 9; the numbers are the follow-up times for each subject and the `+' indicates
censoring. All start with a weight of 1. At time 2+ subject c transfers their weight evenly to
the 7 subjects with longer survival (d�j), leaving each of them with a weight of 1 + 1/7 = 8/7.
For tied times, censors are assumed to occur after deaths, so subject b does not participate in
the redistribution. At time 4+ subjects e and f each transfer a weight of 8/7 evenly to the
remaining 4 (g�j), leaving each of those with a new weight of 8/7 + (1/4)(8/7) + (1/4)(8/7) =
12/7. Finally, at time 5+ subject h transfers their weight of 12/7 equally to i and j, leaving each
of those with a weight of 12/7 + (1/2)(12/7) = 18/7. After each transfer, the total sum of the
weights is unchanged.

If we form a (weighted) empricial CDF of the �nal data, it will have jumps of 1/10 at times 1
and 2, 8/70 at time 3, 12/70 at time 5, and 18/70 at times 8 and 9, which turns out to be exactly
the step sizes in the Kaplan-Meir estimate. (In practice, the rttright routine �rst renorms the
weights so as to sum to 1, thus the �nal weights will not have to be divided by 10 when creating
the empirical CDF. However, the table was easier to illustrate initial weights of 1 rather than
1/10.) As a reminder, the KM is de�ned as the seqential product of the fraction who were at
risk but did not have an event, at each event time. That is

> km <- rbind(time= c(0, 1, 2, 3, 5, 8, 9),

km = cumprod(c(1, 9/10, 8/9, 6/7, 3/4, 1/2, 0/1)))

> km

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

time 0 1.0 2.0 3.0000000 5.0000000 8.0000000 9

km 1 0.9 0.8 0.6857143 0.5142857 0.2571429 0
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Weight at time
Id Survival 0 2+ 4+ 5+
a 1 1 1 1 1
b 2 1 1 1 1
c 2+ 1 0 0 0
d 3 1 8/7 8/7 8/7
e 4+ 1 8/7 0 0
f 4+ 1 8/7 0 0
g 5 1 8/7 12/7 12/7
h 5+ 1 8/7 12/7 0
i 8 1 8/7 12/7 18/7
j 9 1 8/7 12/7 18/7

Total 10 10 10 10

Table 1: Hand calculation of the new RTTR weights, after each censoring time.

Another way to compute the RTTR weights is by using the inverse probability of censoring.
Let G(t) be the KM calculation where censoring is considered as the event. This has the values
shown below.

> G <- cumprod(c(1, 7/8, 4/6, 2/3))

> names(G) <- c(0, "2+", "4+", "5+")

> G

0 2+ 4+ 5+

1.0000000 0.8750000 0.5833333 0.3888889

> 7/G

0 2+ 4+ 5+

7 8 12 18

Because censoring happens after death, at time 2+ the product term is 7/8, 7 uncensored out
of 8 at risk for censoring, whereas the term was 8/9 in the KM for death. (The fairly common
practice of using survfit(Surv(time, 1-status) 1) does not give correct values for G, if
there are any tied death/censoring pairs). 1/G has values of 1/10, 8/7, 12/7 and 18/7. That is,
assigning as weight of 1/G(t) to an event at time t and 0 to censored values exactly reproduces
the RTTR weights. The same care that about tied times used to compute G also applies to
its use. Formally G(t) is de�ned as a left continuous function: the death at time 2 is assigned
a weight based on G(2 − ϵ) = 1, rather than G(2 + ϵ) = 7/8. Again, this is an unfortunately
common coding error. We have used the rttright function as a code check for our 1/G methods
as well as others.

The connection between inverse probability of censoring (IPC) weights and the RTTR is
connected to survey sampling ideas. At any chosen time point s the RTTR for those still alive at
s will be larger than one, each subject represents both themselves and some fraction of those who
have been censored. The survey sampling version of the same idea gives a weight of 1/Pr(not
censored) to each of these subjects, which turns out to be the same.

The addition of case weights add a small wrinkle to the algorithm: when the weight for
censored subject is redistributed, it now done proportional to the case weights. Practially, it

2



only means that the code has keep the original case weights as a separte vector from the ongoing,
redistributed weight for each observation. For the IPC approach, new weights are wi/G(ti+)
where w is the original case weight.

2 Competing risks

For the case of competing risks all the above arguments translate directly. Assume for instance
that there were three causes of death A= cardiac and B=cancer and C= other, and that the
deaths at times 1, 3 and 9 were of type A, times 2 and 5 of type B, and the death at time 8 of type
C. After application of the RTTR or IPC process we have new weights, as before. The cardiac
death curve will start at 0 and have jumps of size 1/10, 12/70 and 18/70 at time 1, 5 and 9,
respectively, the cancer death curve jumps of size 8/70 and 12/70 at times 3 and 5, and the other
death curve a jump of size 18/70 at time 8. This matches the result of an Aalen-Johansen curve,
i.e., the result of survfit when the status variable has been replaced with a factor variable with
levels of censor, cardiac death, cancer death, and other death.

An incorrect, though common error for competing risks data is to estimate one of the failure
curves using an ordinary Kaplan-Meier, with status variable 1 for the endpoint of interest and 0
for censoring and the other endpoints. The RTTR approach illustrates the folly of this: the KM
of time to cardiac corresponds to an RTTR calculation which will redistribute the weight for
subject b at t = 2, the point of their cancer death. This implicity assumes that subject b is still
at risk for a cardiac death sometime in the future and leads, not surprisingly, to an overestimate
of cumulative cardiac death risk. A correct RTTR only redistrubutes actual censorings.

3 Brier score

A well known goodness of �t estimate for binomial data is the Brier score, which is essentially
an ordinary correlation coe�cient using the 0/1 response as y and the prediction p̂ from a �tted
model. Recall the usual de�ntion

R2 = 1−
∑

(yi − ŷi)
2∑

(y − y)2

To adapt R2 for survival data involves 3 steps. The �rst two are straightforard: decide on
a particular time point τ , then use P(death time ≤ tau) as the response y; and decide on the
intercept value y to be used as reference. For the second of these the usual choice is 1−KM(τ),
the estimated overall probability of death by time τ based on the Kaplan-Meier. Below we will
use the Rotterdam data set, contains long term death and recurrence status for a cohort of breast
cancer patients; there is a median follow-up of 9.3 years and a median recurrence free survival
of 6.9 years.

> # recurrent free survival (earlier of death or progression)

> # see help(rotterdam) for explanation of ignore variable

> ignore <- with(rotterdam, recur ==0 & death==1 & rtime < dtime)

> rfs <- with(rotterdam, ifelse(recur==1 | ignore, recur, death))

> rfstime <- with(rotterdam, ifelse(recur==1 | ignore, rtime, dtime))/365.25
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> rsurv <- survfit(Surv(rfstime, rfs) ~1, rotterdam)

> rsurv

Call: survfit(formula = Surv(rfstime, rfs) ~ 1, data = rotterdam)

n events median 0.95LCL 0.95UCL

[1,] 2982 1670 6.9 6.17 7.56

> ybar <- 1- summary(rsurv, time=4)$surv

> rfit <- coxph(Surv(rfstime, rfs) ~ pspline(age) + meno + size + pmin(nodes,12),

rotterdam)

> psurv <- survfit(rfit, newdata= rotterdam)

> dim(psurv)

data

2982

> yhat <- 1- summary(psurv, time=4)$surv

For the above �t, say we would like to evaluate the Brier score at tau = 4 years. An overall
probability of death is easily extracted from the KM rsurv. For p̂ we �rst obtain all 2982
predicted survival curves based on the �tted model, one for each subject, and then read o� the
prediction at 4 years for each subject. The third ingredient of R2 is the 0/1 alive/dead status
yi of each subject at 4 years, and raises an immediate di�culty: what value should be used for
subject 33, who is censored at 2.8 years? We simply do not know what their alive/dead status
will be at 4 years. There are 62 such subjects. One very bad idea is to simply leave them out of
the calculation. A better one is to employ the RTTR algorithm, stopping at 4 years. The result
is a weight vector which is 0 for the 62 early censorings, each one's weight has been appropriately
redistributed distributed over those with a longer follow-up.

> wt4 <- rttright(Surv(rfstime, rfs) ~ 1, times =4, rotterdam)

> table(wt4 ==0)

FALSE TRUE

2920 62

> brier1 <- sum(wt4 * (rfs- yhat)^2)/ sum(wt4)

> brier0 <- sum(wt4 * (rfs- ybar)^2) / sum(wt4)

> r2 <- 1- (brier1/brier0)

> temp <- c(numerator= brier1, denominator = brier0, rsquared = r2)

> round(temp,3)

numerator denominator rsquared

0.252 0.282 0.107

Formally, the value brier1 above is the Brier score. The result is far more useful in the
r-squared form, however, since the normalizing value (denominator) can have a large variation
across cuto� times. Figure 1 shows results for a Rotterdam data for a range of cuto� times.
When the overall survival is above .8 the two components of the score are small. The R-squared
value has also been called the �index of precision� [?]. This computation for multiple cuto� times
is more e�ciently done by the brier function.
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Figure 1: Components of the Brier score at .1 year increments from 1 to 12 years. B0 = the
denominator, the mean squared error using the overall KM for prediction. B1 = the numerator,
the mean squared error using the model's predictions of survival.

> cutoff <- seq(1, 12, by=.1)

> bfit <- brier(rfit, cutoff)

> names(bfit)

[1] "rsquared" "brier" "times"

4 Time dependent AUROC

A parallel use for the RTTR is to compute a measure refered to as the TD-ROC, though we think
that a more descriptive label is dichotomized time ROC or DT-ROC. Essentially: dichotomize
time at a chosen point τ , compute the concordance C between this binomial outcome variable
and the prediction score of a model. Then since concordance and AUROC are identical for a
binomial outcome, relabel the result. As in the Brier score above, the key issue is dealing with
subjects who are censored before time τ .

An alternative to this which does not involve dichotomization or reweighting is the thresh-
olded concordance. In many studies, we may not be interested in the accuracy of prediction
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beyond a particular time threshold. Examples might be a cancer trial where the drug e�ect for
a subject, if any, is assumed to occur within the �rst 3 years, or a risk score that will be used to
decide patient managment over a 2 year time horizon. In both cases, predictions at longer times
would be irrelevant to the question at hand. A ymax=3 argument to the concordance function
treats any observed outcomes of over 3 years as tied, causing those pairs to be ignored in the
calculation.

> rwt <- rttright(Surv(rfstime, rfs) ~1, rotterdam, times= cutoff)

> cstat <- matrix(0, length(cutoff), 4)

> for (i in 1:length(cutoff)) {

temp1 <- concordance(rfit, ymax= cutoff[i])

ycut <- ifelse(rfstime > cutoff[i], 1, 0)

temp2 <- concordance(ycut ~ rfit$linear.predictor, weight= rwt[,i],

reverse=TRUE)

cstat[i,] <- c(temp1$concordance, temp2$concordance,

sqrt(temp1$var), sqrt(temp2$var))

}

> dimnames(cstat) <- list(cutoff,

c("Threshold C", "Discrete time C", "sd1", "sd2"))

Figure 2 shows the two concordance estimates. The standard errors start out similar, at
early times there are few deaths and so both estimates have limited information. By year 6
the threshold C nearly at the non-thresholded value and the standard error has stabilized. The
dichotomized time DT-C values are always larger, and have a standard error that �rst falls and
then grows, the second due to an increased number of large case weights that are assigned to
only a few subjects. As a comparison, the R2 estimate of .11 is about .55 when put on the same
scale (R2 goes from -1 to 1 and C from 0 to 1). It is not fair to say that one is better than
another based on overall size since the three measures are estimating di�erent targets. A simple
yes/no outcome is easier to predict than the full rank vector, which is in turn easier to predict
than a continous probability.

5 Covariate based RTTR

The RTTR algorithm serves as a good reminder that when a subject is censored, it is important
that they do not di�er in some systematic way from everyone else who is still under observation,
otherwise the concept that the others fairly �represent the future� of the censored observation
will not be valid. If there is something di�erent about the censored subject, this will bias in the
estimated survival probabilities. Therefore, when estimating separate curves for subgroups of
patients (e.g., males and females or treatment groups), the RTTR may be applied separately for
each subgroup of interest. The assumption is, e.g., that redistributing a censored male's weight
to the other males would provide a cohort whose future is �more like� what would have been if
said subject were not to be censored. It is a bit like the temptation to leave one's inheritance
the the child who is most like you.

Of course, one cannot guess the future. Another strategy is attempt balance. For instance,
assume that 2/3 of the males but only 1/3 of the females are censored in a particular study. It
can be argued that weights should then be redistibuted preferentially to males, thus preserving
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Figure 2: Left panel: Time threshold (black) and dichotomized time (red) concordance estimates
for the �tted Rotterdam model, along with 95% con�dence intervals. Right panel: comparative
standard errors.
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the overall balance of the study. There are a few ways to go about this. If the data set is large,
then a separate logisitic regression model can be �t at each censoring time, with P(censored)
as the target response. RTTR weights are reassigned proporional to the �tted probability, or
equivalently using 1/P(uncensored). This highlights a close connection between the RTTR and
marginal structural models. For smaller data sets one can smooth over time by using an overall
Cox model of censoring, and then using per-time point prediction. A Cox model with select
time-dependent coe�cients would be an intermediate approach.

6 Delayed entry

The discussion so far has assumed that any subject is represented by a proper data set, i.e., no
warning or error messages from the survcheck function, and we will continue to assume that.
We have also assumed that all subjects start at the same time, in the same state; this assumption
can be relaxed.

(This code is not yet implemented.)

� Let p(t) be the probability vector at time t, one element for each state.

� At the start we almost always have p(0) = (1, 0, 0, . . . ), everyone in the same starting state;
the starting stated is placed �rst in the set of states by convention.

� Let t0 be the start time, which can be di�erent than 0. Then p(t0) is the emprical distri-
bution of the states among subjects at t0.

� When a subject is censored (really censored) their weight is distributed among all remaining
subjects in the same state, proportional to case weights. We keep two vectors: working
weights, which are subject to redistribution, and the case weights, which stay constant.

� Whenever a subject enters a new state, either delayed entry to the study or a transition
from another state, there is a pooling and redistribution. All the working weights in the
new state are added up, and then re-apportioned among those at risk for further transitions,
proportional to the case weights. It is sort of like a gang of socialist thieves: when a new
member joins the crew any resources he/she brought with them, plus all resources currently
extant, are pooled and re-divided: everyone is equal.

If we do this, then at any given time the weighted distribution of states is exactly the Aalen-
Johansen estimate. For tied times the order of operations is �rst any moves to a new state, then
censorings, then delayed entry. If someone is censored, with no one else to give the weight to, it
isn't clear quite what to do.

Geskus has another way to do this, which is very clever. Let G(t) be the censoring dis-
tribution, as before. Let H(t) be the KM for entry, but computed in reverse time. Then a
working weight of cwi/[G(s−)H(s−)] can be used at time s, where w is the case weight. The
normalization constant c is use to make the working weights sum to 1 at the start of the proces.
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